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Abstract

We build a multimodal database including texts and images, which can query
images by texts, and vice versa. Textual and visual embeddings are extracted by
the techniques of CLIP. kNN and ANN are used as similarity search strategies. We
study the performance of this approach and achieve achieved 96% precision rate
on MS-COCO dataset. Online demo is available at Demo(GPU) and Demo(CPU).

1 Introduction

There are many kinds of data in the world we live in, including texts, images, web pages, voice,
video, etc. With such massive data, the big challenge is to extract information from it. The similarity
search system is one of the applications that helps people to organize multimodal data and discover
useful information faster. For example, through similarity search engine, people can find out where
to buy their desired product by inputting the picture of product. Or they can search for pictures by
just inputting words or sentences.

To realize multimodal similarity search system, we divided our work into three major parts in 1: (1)
embedding, (2) similarity search, and (3) user interface. The summary of each part is as follows:

• We introduce Contrastive Language-Image Pre-training (CLIP)(8) to embed texts and
images into high-dimensional vector spaces and fine-tune pre-trained model to achieve
better performance.

• We implement k-Nearest Neighbor (kNN) and Faiss Approximate k-Nearest Neighbor
(ANN) to conduct multimodal similarity searches, which include image to text, image to
image, text to image, and text to text functions.

• We use an open-source python library Streamlit to construct user interface. It makes everyone
can access to and test our work through web easily and dynamically.

Figure 1: Flow Chart: The input text or image will be encoded by CLIP. Then by using the kNN or
ANN similarity searcher, the top k most similar text or image will be retrieved and shown by our
streamlit user interface.
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Figure 2: CLIP Architecture

2 Related Work

With the advent of deep learning and its high representative ability in information processing, people
always want to explore the relationship between images and texts. First, Alex Krizhevsky et al. (10)
achieved excellent performance on the ImageNet dataset (9). However, image context do not have
a direct connection with text sequences. The task of providing a natural language description of
the content within an image, which is called image captioning, lies at the intersection of computer
vision and natural language processing. Vinyals, Oriol et al. (7) used a vision CNN and a language
generating RNN to finish the task. However, generating the exact words of the text accompanying
each image is a difficult task due to the wide variety of descriptions. Alec Radford et al. (8) found an
easier way to build the bridge. It first embeds each image and text into high-dimensional vector and
directly calculate their similarity. This way can output correct pairings of (image, text) and make it
possible to build a multimodal database full of (image, text) pairs. When we input a new image, we
can use k-Nearest Neighbor (kNN) to search the most similar texts as its captions.

To deal with kNN search time complexity issue, many solutions emerged. For hardware aspect, Garcia
et al. in (1) proposed a CUDA implementation of the ldquobrute forcerdquo kNN search. Shenshen
et al. in (2) presented a CUDA-based parallel implementation of kNN, CUkNN and studied various
CUDA optimization techniques to maximize the utilization of the GPU. Besides GPU acceleration,
Danopoulos et al. in (3) used FPGA-OpenCL platforms on the cloud to address complexity issue. As
for algorithm aspect, Approximate k-Nearest Neighbor (ANN) search appeared for solving this issue.
Andoni et al. in (4) studied many efficient ANN solutions that have been proposed in the last two
decades.

3 Proposed Approach

3.1 CLIP

CLIP is a multimodal neural network architecture. It can process two kinds of input context which
are images and their corresponding captions and gain their high-dimensional vectors. Then CLIP
calculates the similarity between each image embedding vector and text embedding vector. Because
each image has the highest similarity with its own caption, in the confusion matrix, the values on the
diagonal should be the largest in each row and column. On this setting, CLIP jointly trains an image
encoder and a text encoder to predict the correct pairings of a batch of (image, text) training samples.

3.1.1 Model

Architecture CLIP model is composed of two parts, which are text encoder and image encoder
shown in 2.
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Figure 3: CLIP Prediction Process

The text encoder is a Transformer (5). First, we follow the original setting of CLIP and bracket each
text sequence with [SOS] and [EOS] tokens. Then we utilize word embedding to tokenize each text
into integers. These tokens are used as input to the Transformer. We calculate the activation map of
the last token ([EOS]) as the feature representation for the whole text sequence. Finally, it is linearly
projected into the multimodal embedding space.

The image encoder is Vision Transformer (ViT) (6). ViT first split an image into fixed-sized patches
to form a text-like sequence and input them into a Transformer Encoder. After many self-attention
and feed-forward layers, the output vector is regarded as the feature map for the image.

We generate the image and text embeddings using pretrained ViT-B/32 model and the built-in function
encode_image and encode_text.

Distance Method There are many useful distance methods to calculate the similarity of two vectors,
such as L2, cosine and dot product. We use cosine as our distance method. This method has two
advantages. First, original CLIP also use cosine method. Second, the value of cosine function is
always in range [-1,+1]. It is easily understood as a value for similarity and can be shown on our
demo directly. Also when we finetune the pretrained model, small values in the confusion matrix can
save much time and computing complexity.

Prediction After building multimodal embedding vector database, a useful application is that it
can be used to query texts by inputting an image. Following the process shown in 3, CLIP image
encoder embeds the query image into a new vector Iq. Then we load all text embedding vectors from
the database and calculate the similarity between each text vector and Iq. Finally, we can output the
caption with the highest similarity value.

3.1.2 Finetune

CLIP is trained on WebImageText dataset, which contains 400 million (image, text) pairs. In order to
get a better performance on MS-COCO dataset, we finetune the pretrained model on it.

We regard it as a classification problem and use CrossEntropyLoss to update model parameters. Given
a batch of N (image, text) pairs, CLIP output N ×N possible (image, text) pairings. In the i-th row,
the i-th column should have the largest value. First apply the softmax function to all values in this
row. Then apply -log function to the i-th column as i-th loss. Then we sum all loss on each row.
Finally, we use AdamW optimizer with a very small learning rate equals to 5e-8 and weight decay
equals to 1e-3. We finetune the model for 5 epochs until its validation accuracy converges.

3.2 Similarity Search

For this part, we introduce k-Nearest Neighbor (kNN) and Approximate k-Nearest Neighbor (ANN)
searching approaches. Due to the high time complexity of kNN, we further accelerate kNN with
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GPU. We tested four scenarios (Image to Text, Text to Image, Image to Image, Text to Text), and
the result is shown in 4. The GPU acceleration leads to a 3 times faster overall run time. With this
acceleration, ANN: Faiss ANN(100, 5) is still 36% faster than kNN with only 3% accuracy drop. The
rest of comparisons for efficiency and performance are shown in 5 and 6. And more details about
these two search algorithms will be provided in the following subsections.

Figure 4: kNN Efficiency Comparison (CPU v.s. GPU)

Figure 5: Accuracy Comparison (kNN v.s. ANN)

3.2.1 kNN Search

Let q be the query vector, and {ci}ni=1 be the search candidates, where n is the total number of
candidates. First, the algorithm computes similarity scores with all candidates by chosen distance or
similarity method (L2, dot product, or cosine). The similarity scores s(q, ci) are computed as

s(q, ci) =


−
√
(q− ci)T (q− ci), if similarity method = L2

qT ci, if similarity method = dot product
qT ci

∥q∥∥ci∥ , if similarity method = cosine
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Figure 6: Search Speed Comparison (kNN v.s. ANN)

Then the algorithm ranks {ci}ni=1 by similarity scores {s(q, ci)}ni=1 with descending order and
return the first k candidates as final answers. Therefore, the time complexity of kNN algorithm is
nd+ k log n, where d is the dimension of q.

3.2.2 ANN Search

We utilize Meta Faiss IVF algorithm as our ANN model. To begin with, it partitions all candidates
into m groups and computes the center point of each group as representative. For each query q, it
first computes similarity scores with m representatives and selects the most similar t ones. Then,
only the candidates within these t groups will be considered to calculate similarities. Like kNN,
the most similar k ones will be returned. To analyze, the time complexity of ANN is (t/m)nd +
md + t logm + k log(tn/m). Since n normally dominates all the other variables, 1 − t/m will
approximately be the rate of acceleration.

3.3 Streamlit

For user interface, we implemented the package Streamlit, an open-source Python library. Considering
the easy use for users, the interface is divided into three parts, it is shown in7.

For the first part, users can select searching strategies including KNN search and ANN search based
on Meta Faiss IVF algorithm, and also choose whether the outputs are fine tuned based on GPU. It
also contains distance options such as cosine, L2 and dot product. Users may also adjust the k value
or determine whether they wish to show the executing time. The second part is for users to upload
image or input the text they want to search for. As for the last part, we allowed users to utilize four
kinds of tools, including Image to Text, Text to Image, Image to Image and Text to Text.

To further demonstrate the performance of our model, we compare the output of finetuned model
using cosine as distance option comparing to the original captions from the training set. As shown in
1, the output is on high accuracy.

4 Experimental Evaluation

4.1 Dataset

MS-COCO training dataset and validation dataset have totally 82783 images and 40504 images
separately. Each image has more than 5 captions. We randomly sample 80000 (image, text) pairs
from training and validation dataset separately and get the embedding vectors to build the main and
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Figure 7: Streamlit User Interface

Input Image

Standard
A woman in a floral
swimsuit.holds a
pink umbrella.

A man standing up and
holding a small, closed
laptop computer in one hand.

A white dog holding
a purple frisbee in
it’s mouth.

Ours
A woman protects herself
from the sun with a cute
pink umbrella.

A man showing a small laptop
type device.

A dog has a purple
frisbee in its mouth

Table 1: Standard Output vs Our Output

test database. The main dataset can be used to finish Image to Text and Text to Image functions. And
we also use main dataset to finetune our model. The test dataset is used to evaluate our finetuned
model.

4.2 Evaluation

4.2.1 Metrics

For the evaluation part, we adopt precision rate to evaluate model performance. Precision rate is the
ratio of true positives to the total of the true positives and false positives. Precision rate is defined as
follows,

Precision rate =
True Positive

True Positive+ False Negative
=

∑N
i=0 Ri

Total number of samples

where Ri = 1 when the correct answer is contained within k neighbors; Ri = 0 when k neighbors
don’t contain the correct answer.
The higher the precision rate, the better performance the model has achieved.
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4.2.2 Comparable analysis between different distance methods

Each graph as shown in 8 indicates the precision rate measured by three distance methods (cosine,
dot product and L2) from pretrained models on either training or validation dataset. As the value
of k goes up, the precision rate is improved. As figure shows, for both Image to Text] and Text to
Image functions, we got the highest precision rate when Cosine is used as distance method in both
pretrained and finetune models.
And this result is in line with our expectation since CLIP technique also compute the cosine similarities
of the image’s encoding.

Figure 8: Precision rate measured by three distance methods from pretrained models

We compared our result with the precision rate of a random classifier, which is defined as k divided by
total number of samples. As shown in 9, the precision rate is 10% higher than the random classifier
when k=1, and twelve times higher when k=1000.

Figure 9: Precision rate of a random classifier vs our pretrained model

4.2.3 Evaluation of fine-tune model

When we first evaluated our pretrained models, we found the results were not satisfactory. For
better performance, we finetunde the CLIP model on MS-COCO dataset. We used the training set to
finetune the model and used validation set to evaluate its accuracy. As shown in 10, after 5 round
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finetune, the accuracy increases 6 %. And we also found finetune model is better than pretrained
model in our demo.

Figure 10: Precision rate measured by three distance methods from pretrained models

After we finetuned the CLIP model, we cut the error rate in half and achieved 96% precision rate in
finetune models on both training and validation datasets for both Image to Text and Text to Image
functions.

Figure 11: Precision rate of Pretrained vs Finetune Model with ’cosine’ Method

5 Conclusion

We have presented the CLIP, a multi-modal vision and language model, specifically adapted to
the task of word and image embedding. When each image and its corresponding caption gain
their high-dimensional vector, we successfully adopted kNN and ANN to execute the multi-modal
similarity search. We fine-tuned our model on MS-COCO dataset and achieved 96% precision rate
on both training and validation dataset. To make it easier to use, we used streamlit to build a user
query interface, which allows user to easily query similar images and texts.

Future work: At present, our model only takes into account one caption corresponding to one image.
As a image has five correct captions in the original dataset, in the future we can consider using
multi-classification instead of binary classification and redefine evaluation metrics. As a next step,
we intend to incorporate labels into datasets and use them as a part of similarity evaluation. This
should lead to additional performance gains as well as improved interpretability of the model.
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